
18 The Delphi Magazine Issue 70

Under Construction:
WebBroker For Linux
by Bob Swart

In this article, we’ll see how we
can use Kylix to create web

server applications for the Apache
web server running on Linux.

First of all, I’ll assume that you
have Kylix installed, as well as the
Apache web server. You will, I’m
afraid, need the Server Developer
edition of Kylix. Take heart,
though, as you can also develop
web applications using the Desk-
top Developer edition of Kylix, as
console applications, in the same
way that you have been able to in
Delphi. I’ll show you how to do this
next month.

Start Kylix and close the default
project. Start a new project using
File | New, and select the Web
Server Application icon from the
Object Repository. This will show
you the New Web Server Application
wizard (Figure 1).

Select the default choice here for
a CGI standalone executable. This
will generate a new Web Broker
project. We need to save this pro-
ject, so select File | Save All,
which will prompt you for the file-
name of the web module (which I
call webmod.pas) and the filename
of the main project (which I call
cgi42.dpr in this case).

Now click on the empty web
module called WebModule1. This is
the central point of our web server
application. It looks very much like
a data module, and is in fact a data
module with a special part added
to it: a TWebDispatcher component.

This means that
if you don’t want
to start with
an empty web
module, but want
to continue work-
ing with an exist-
ing data module,
you can do so by
dropping a Web-
Dispatcher com-
ponent from the
Internet tab of
the component
palette onto the
data module to turn it into a web
module. The Web Dispatcher will
analyse incoming client requests,
and dispatch each request to a cor-
responding WebActionItem. The
consequence of this design (a web
dispatcher and a collection of
WebActionItems) is that a single web
server application can actually
perform multiple tasks. We can
have a WebActionItem that can be
triggered to generate an overview
of information (for example, items
from a catalogue), another one to
order a specific item, and a last one
to present the invoice. All three
can be combined in a single appli-
cation, thereby sharing everything
they have in common (such
as database connectivity, layout
specifics, etc).

For the example in this article,
we’ll create three WebActionItems.
First, right-click on the web module
to start the Action Editor. Then,
click three times on the
yellow icon to create three

new WebActionItems. For each one,
we can use the Object Inspector to
configure them. This is needed
because WebActionItems are distin-
guished by their PathInfo property
(the information appended to the
URL, as we’ll see in a moment). In
this case, let’s give the first
WebActionItem a PathInfo value of
/hello, the second one /table and
leave the third one empty. We also
need to specify a default Web-
ActionItem (the one which will be
selected by the Web Dispatcher if
none of the PathInfo values
match), and I always take the last
one, with the empty PathInfo as
default WebActionItem (note that
once it’s the default, the PathInfo
no longer matters), see Figure 2.

Select the default WebActionItem
(with /hello PathInfo), and switch
to the Object Inspector again. Click
on the Events tab, and double-click
on the OnAction event to generate
the event handler code in the
editor. Inside the editor, you can
now write the response code for
this default WebActionItem. Apart
from the first Sender parameter,
the OnAction event handler has
three more parameters: Request,
Response and Handled. If we ignore
the last two for now, we can use the
Response to return something for

➤ Figure 1

➤ Figure 2

June 2001 The Delphi Magazine 19

this default action. In this case, I
just want to say Made in Kylix!,
which I can return in the
Response.Content property. In
short, my event handler is coded
as in Listing 1.

We’re almost ready with the first
web server application written in
Kylix. It’s now time to make sure
the resulting application is posi-
tioned in the right directory, so
Apache can find it and execute it.
On my machine, working as root, I
have a /home/httpd/cgi-bin direc-
tory that can contain CGI applica-
tions for the Apache web server.
To make sure that cgi42 ends up in
this cgi-bin directory, we need to
specify the Output Path in the
Directories/Conditionals tab of
the Project Options dialog (see
Figure 3).

Apache
We can now compile the cgi42
application, and it will indeed
result in a cgi42 executable file
inside the /home/httpd/cgi-bin
directory. However, before we can
execute it, we first need to tell
Apache where to find the libraries
that Kylix Web Broker applications
need. For this, we need to manually
edit the httpd.conf file as follows:

vi /etc/httpd/conf/httpd.conf

Add a single line to the end of the
file, with the following content:

SetEnv LD_LIBRARY_PATH
/root/kylix/bin

If you are deploying
your application on
another machine
(where Kylix is
not installed), see
the Kylix WebBroker
Deployment boxout
later. After you
have modified the
httpd.conf file, you
will need to explic-
itly restart the
Apache web server
using the following
command:

/etc/rc.d/init.d/ httpd restart

At this time, we’re ready to start
our browser and show the cgi42
web server application. The easi-
est way is to call http://localhost/
cgi-bin/cgi42, or connect to my
Linux machine from another
machine using the IP address,
for example http://192.168.92.244/
cgi-bin/cgi42 and watch the results
(Figure 4).

This concludes the first native
Linux web server application writ-
ten in Kylix. The nice thing to
notice is that, apart from configur-
ing Apache to find the supporting
libraries, we didn’t do anything
that we wouldn’t have do to when
using Delphi. In fact, I could take

the source code from this project
and recompile it on my Windows
machine to produce a regular
Windows CGI application.

PageProducers
Let’s return to Kylix, and open up
the Web Module again. This time,
we’re going to use some help to
produce HTML code. Specifically,
there are PageProducer and Table-
Producer components on the
Internet tab of the component
palette that are very powerful to
use. Let’s start with a PageProducer
component first, and drop one
from the Internet tab on the web
module.

A PageProducer component can
be used to prepare an HTML tem-
plate file (inside either the built-in
HTMLDoc property or the external
pointing HTMLFile property). For
this example, I’m using the HTMLDoc
property, but in real life the
HTMLFile property may be more
powerful, since it enables you to
maintain the HTML template with-
out having to recompile the web
server application itself, which can
be quite handy if you have
separate web design and web
application teams.

Anyway, inside the String List
Editor for the HTMLDoc property, I
can specify the HTML template,
including some special non-HTML

procedure TWebModule1.WebModule1Actions2Action(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);

begin
Response.Content := '<H1>Made in Kylix!</H1>';

end;

➤ Listing 1

➤ Figure 3

➤ Figure 4

20 The Delphi Magazine Issue 70

tags using the # character (I usually
pronounce this as the ‘hash’ char-
acter, and not the ‘pound’ charac-
ter, but recent events have led me
to believe I should probably call it
the ‘sharp’ character instead).
These so-called #-tags are special
placeholders that each trigger an
event handler to dynamically
replace the #-tag with another
value.

In this case (Figure 5), I clearly
wish to replace the <#DATE> tag with
the current date (and time, to show
that it is indeed updated dynami-
cally once you refresh the page).

Close the String List Editor and
move to the Events tab of the
Object Inspector to see the
OnHTMLTag event that is defined for
the PageProducer component. This
event handler will be fired for

every #-tag inside
the HTMLDoc (or
inside the external
file specified by the
value of HTMLFile,
see Listing 2).

Now, hit F12
to display the
Web Module again.
Right-click inside
the Web Module to
start the Action
Editor. Select the

first WebActionItem (the one with
the /hello PathInfo), and go to the
Object Inspector. Here, click on
the Properties tab. Unlike the pre-
vious time we handled a Web-
ActionItem, we do not write code
for the OnAction event handler, but
use the Producer property instead.
This property can point to any
page producer or table producer,
which can help in generating
HTML for us. In this case, there is
only one PageProducer, of course,
so we just select that one. Now,
recompile the application, and
enter the following URL inside
your browser:

http://localhost/cgi-bin/
cgi42/hello

As you can see, it’s the same URL
as before, but with the /hello
PathInfo appended to it. The result
is shown in Figure 6. As you can
see, the PathInfo /hello is
appended to the URL as we have
used before. This is a convenient
way to request different actions
from the same application.

Cookies
WebBroker applications have full
support for cookie functionality to
maintain state among sessions, or
implement local user configura-
tion information. A simple exam-
ple of using a cookie is a counter,
which is stored in the local cookie
file, and can be used to display the
number of visits by a single user to
a website.

In order to display a cookie
value, we need to change
the HTMLDoc property of the
PageProducer, and add a special
<#counter> tag (Figure 7). Next, we
need to extend the OnHTMLTag event
handler as in Listing 3. We also
need to set the cookie value (and
increase it after each visit), which
can best be done in the OnAction
event handler for the /hello
ActionItem, as in Listing 4. Note
that we now use the OnAction event
handler as well as the Producer
property of this WebActionItem.
That’s perfectly normal, as both
get ‘executed’, starting with the
Producer property first. The result
is a counting cookie (Figure 8).

procedure TWebModule1.PageProducer1HTMLTag(Sender: TObject; Tag: TTag;
const TagString: String; TagParams: TString; var ReplaceText: String);

begin
if TagString = 'DATE' then
ReplaceText := DateTimeToStr(Now);

end;

procedure TWebModule1.PageProducer1HTMLTag(Sender: TObject; Tag: TTag;
const TagString: String; TagParams: TString; var ReplaceText: String);

begin
if TagString = 'DATE' then
ReplaceText := DateTimeToStr(Now)

else
if TagString = 'counter' then
ReplaceText := 'user #' + Request.CookieFields.Values['counter'];

end;

➤ Figure 5

➤ Above: Listing 2 ➤ Below: Listing 3

➤ Figure 6

22 The Delphi Magazine Issue 70

User Input
Apart from CookieFields, we can
also work with user input. Two
collections are offered to help

procedure TWebModule1.WebModule1Actions0Action(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);

var
Cookie: Integer;
Cookies: TStringList;

begin
Cookie := StrToIntDef(Request.CookieFields.Values['counter'],0);
Inc(Cookie);
Cookies := TStringList.Create;
try
Cookies.Add('counter=' + IntToStr(Cookie));
Response.SetCookieField(Cookies,'','',-1,false);

finally
Cookies.Free

end
end;

<HTML>
<BODY>
<FORM ACTION="http://192.168.92.244/cgi-bin/cgi42/hello" METHOD=GET>
Login: <INPUT TYPE=text NAME=login>

<INPUT TYPE=submit>
</FORM>
</BODY>
</HTML>

➤ Figure 8

➤ Above: Listing 4 ➤ Below: Listing 5

➤ Figure 7

us: ContentFields (for the POST pro-
tocol) and QueryFields (for the GET
protocol). Unfortunately, the first
release of Kylix Server Edition con-

tains a bug which
causes the
ContentFields to
be left empty.

In order to
verify this, let’s
make a form
using a simple
input field called
login, as shown
in Listing 5. Save
this form in a file
called login.htm
so we can use it

later. The content of the HTMLDoc
property is changed to include a
new #-tag for the login name, as
follows:

<H1>Made in Kylix!</H1>
<HR>
Today is <#DATE>
<P>
Welcome visitor <#counter>
(<#login>)

Now we need to extend the
OnHTMLTag event handler again, as
shown in Listing 6. Note the
QueryFields, which belong to the
GET protocol. Using the GET proto-
col means that all the input fields
are passed on the URL, which
means that if we enter Bob in the
edit field and then click on the
Submit button, the URL will actu-
ally contain the login=Bob string:

http://192.168.92.244/cgi-bin/
cgi42/hello?login=Bob

When using METHOD=POST in the
form, we must replace QueryFields
with ContentFields. However, this
exposes a bug in the current
release of Kylix, since it appears
that the ContentFields are not
correctly initialised. This problem
will be fixed in an upcoming
update pack for Kylix (so stay
tuned to my website at
www.drbob42.com/kylix to find
out when this will appear). In the
meantime, we can use the GET pro-
tocol and switch over to using POST
later, since the WebAction items
themselves respond to either
protocol. You only need to modify
QueryFields (for GET) into
ContentFields (for POST) when this
bug is fixed. Or stick with GET, but I
always prefer POST as it looks (and
feels) much ‘cleaner’ with no ugly
fat URLs.

Tables In HTML
And now for the final demo: show-
ing a database table using a uni-
directional dataset. First, drop a
TSQLConnection component on the
web module. Set IBLocal as
ConnectionName, and make sure to
set the LoginPrompt property to
False (otherwise your web server
would get the login dialog, and the

June 2001 The Delphi Magazine 23

user would get nothing). Next,
drop a TSQLQuery component, set
its SQLConnection property to the
SQLConnection1 component, and
write the following line of SQL for
the SQL property:

select * from employee

Activate the query to make sure
everything is fine.

Now, go back to the Internet tab
of the Component Palette, and
drop a TDataSetTableProducer com-
ponent on the web module. This
component can work with any
dataset, including TSQLTable, TSQL-
Query and TSQLStoredProc (as well
as the TSQLClientDataSet), but in
this case a unidirectional dataset is
more than enough). Assign the
DataSet property of the DataSet-
TableProducer component to the
SQLQuery component, and prepare
yourself to do some design
settings.

Using Delphi in Windows, we
could either right-click on the
DataSetTableProducer and select

procedure TWebModule1.PageProducer1HTMLTag(Sender: TObject; Tag: TTag;
const TagString: String; TagParams: TString; var ReplaceText: String);

begin
if TagString = 'DATE' then
ReplaceText := DateTimeToStr(Now)

else
if TagString = 'counter' then
ReplaceText := 'user #' + Request.CookieFields.Values['counter']

else
ReplaceText := Request.QueryFields.Values['login']

end;

➤ Listing 6

unit webmod;
interface
uses
Variants, SysUtils, Classes, HTTPApp, HTTPProd,
DBXpress, FMTBcd, DBWeb, DB, SqlExpr;

type
TWebModule1 = class(TWebModule)
PageProducer1: TPageProducer;
SQLConnection1: TSQLConnection;
SQLQuery1: TSQLQuery;
DataSetTableProducer1: TDataSetTableProducer;
procedure WebModule1Actions2Action(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var
Handled: Boolean);

procedure PageProducer1HTMLTag(Sender: TObject; Tag:
TTag; const TagString: String; TagParams: TStrings;
var ReplaceText: String);

procedure WebModule1Actions0Action(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var
Handled: Boolean);

procedure WebModule1Actions1Action(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var
Handled: Boolean);

private
public
end;

var
WebModule1: TWebModule1;

implementation
uses
WebReq;

{$R *.xfm}
procedure TWebModule1.WebModule1Actions2Action(Sender:
TObject; Request: TWebRequest; Response: TWebResponse;
var Handled: Boolean);

begin
Response.Content := '<H1>Made in Kylix!</H1>';

end;
procedure TWebModule1.PageProducer1HTMLTag(Sender: TObject;
Tag: TTag; const TagString: String; TagParams: TStrings;
var ReplaceText: String);

begin
if TagString = 'DATE' then
ReplaceText := DateTimeToStr(Now)

else if TagString = 'counter' then
ReplaceText := Request.CookieFields.Values['counter']

else // login

ReplaceText := Request.QueryFields.Values['login']
// Request.QueryFields == GET protocol (fat URL)
// Request.ContentFields for POST doesn't work!

end;
procedure TWebModule1.WebModule1Actions0Action(Sender:
TObject; Request: TWebRequest; Response: TWebResponse;
var Handled: Boolean);

var
Cookie: Integer;
Cookies: TStringList;

begin
Cookie :=
StrToIntDef(Request.CookieFields.Values['counter'],0);

Inc(Cookie);
Cookies := TStringList.Create;
try
Cookies.Add('counter=' + IntToStr(Cookie));
Response.SetCookieField(Cookies,'','',-1,false);

finally
Cookies.Free

end
end;
procedure TWebModule1.WebModule1Actions1Action(Sender:
TObject; Request: TWebRequest; Response: TWebResponse;
var Handled: Boolean);

begin
try
// SQLConnection1.LoadParamsOnConnect := False;
SQLConnection1.Connected := True;
try
Response.Content :=
DataSetTableProducer1.Content

finally
SQLConnection1.Connected := True

end
except
on E: Exception do
Response.Content := 'Error: ' +
E.Message

end
end;
initialization
WebRequestHandler.WebModuleClass := TWebModule1;

end.

➤ Listing 7

➤ Figure 9

24 The Delphi Magazine Issue 70

the Response Editor option, or
click on the ellipsis (...) for the
Columns property (of the DataSet-
TableProducer) to get the Response
Editor dialog containing a WYSI-
WYG preview. This preview was
based on the Internet Explorer
ActiveX control, and I was wonder-
ing what the support under Linux
would look like. It turns out we still
get a dialog to edit the properties
of the different table columns (ie all
the fields in the dataset), but no
longer see a preview of the result.
Maybe next release of Kylix?

Regardless of the preview abil-
ity, the Columns Editor Dialog is
still very powerful, as it allows us
to set the global table options such
as cell alignment and padding,
border, background colour and
table width. Note that these are
options for the entire table! (Figure
9).

For individual options (for each
of the table columns) we still need
to select an individual column and
move to the Object Inspector.
Here, we can still set individual
column options such as the back-
ground colour, alignment (both
horizontal and vertical), and even
individual options for the column
header.

After we’re done customising
the HTML options, we should make
sure the DataSetTableProducer is
indeed used by connecting it to the
/table action item. I’ve written the
code in the OnAction event handler
(see Listing 7).

But before we can test the new
web broker application, we must
first make sure that everything is
set right to access dbExpress from
our CGI application. As Brian Long
described in his Apache Shared
Modules article last month, we
need to add two more lines to the
/etc/httpd/conf/httpd.conf file:

SetEnv LANG en_US
SetEnv HOME /home/bswart

Note that if you installed Kylix as
root, you need to set the HOME to
/root instead (or any other place
where a .borland hidden directory
can be found).

After we have made those last
modifications, we are ready to
make a last compile and test the
web server application using
dbExpress. The result can be
shown in any browser again, and
looks like Figure 10.

The final source code for all the
examples in this column can be
seen in Listing 7.

➤ Figure 10

Kylix WebBroker Deployment
When deploying Kylix web server applications (on Apache web servers for
example), you generally only need to distribute your CGI executable or shared
object (DSO) file.

However, remember that we had to set the LD_LIBRARY_PATH to
/root/kylix/bin in the httpd.conf file? This means that potentially other files
must be deployed as well, such as specific Kylix runtime packages. When using
dbExpress, for example, you need to deploy the specific driver for the data-
base that you're using (like libsqlib.so for InterBase, libsqlmys.so for MySQL,
libsqlora.so for Oracle, or libsqldb2.so for DB2). Also, when using
ClientDataSets or SQLClientDataSets, you must not forget to deploy midas.so
as well.

See Kylix Developer's Guide page 13-5 and the file "deploy" in your Kylix
directory for more information.

Note that the code from the final
listing will no longer compile using
Delphi 5 (because we used
dbExpress, which is not available
in Delphi 5), but it will probably
work without a single source code
change with the new Delphi 6.

Next Time
So far we’ve seen web server appli-
cation support in Kylix Server Edi-
tion using WebBroker technology
inside NetCLX. However, as I said,
you need Kylix Server Edition for
these tricks, which is the current
high-end (and most expensive)
edition of Kylix. Can’t we produce
web server applications with the
Kylix Desktop Edition? Or with the
free and forthcoming Open Edi-
tion? Sure we can, just not with
WebBroker, but the ‘hard way’.
Which can also be fun, and very
enlightening. So next time, join me
as I show you how to write web
server applications with Kylix
Desktop edition, without Web-
Broker, with dbExpress, and still
with great results. So stay tuned...

Bob Swart (aka Dr.Bob, visit
www.drbob42.com) is an @- Con-
sultant, Trainer and co-founder of
the Kylix/Delphi Oplossings-
Centrum (see www.KDOC.nl), a
PinkRoccade nv Company in The
Netherlands.

	Apache
	PageProducers
	Cookies
	User Input
	Tables In HTML
	Kylix WebBroker Deployment
	Next Time

